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Abstract

Risk factors and cognitive sequelae of brain arteriolosclerosis pathology are not fully understood. To address this, we

used multimodal data from the National Alzheimer’s Coordinating Center and Alzheimer’s Disease Neuroimaging

Initiative data sets. Previous studies showed evidence of distinct neurodegenerative disease outcomes and clinical-

pathological correlations in the ‘‘oldest-old’’ compared to younger cohorts. Therefore, using the National Alzheimer’s

Coordinating Center data set, we analyzed clinical and neuropathological data from two groups according to ages at

death:< 80 years (n¼ 1008) and �80 years (n¼ 1382). In both age groups, severe brain arteriolosclerosis was associated

with worse performances on global cognition tests. Hypertension (but not diabetes) was a brain arteriolosclerosis risk

factor in the younger group. In the� 80 years age at death group, an ABCC9 gene variant (rs704180), previously

associated with aging-related hippocampal sclerosis, was also associated with brain arteriolosclerosis. A post-hoc arterial

spin labeling neuroimaging experiment indicated that ABCC9 genotype is associated with cerebral blood flow impairment;

in a convenience sample from Alzheimer’s Disease Neuroimaging Initiative (n¼ 15, homozygous individuals), non-risk

genotype carriers showed higher global cerebral blood flow compared to risk genotype carriers. We conclude that brain

arteriolosclerosis is associated with altered cognitive status and a novel vascular genetic risk factor.
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Introduction

Cerebrovascular pathologies affecting small arteries and
arterioles are common findings in the aged brain1–3 and
are often seen in brains of personswith dementia.4–7Here,
we focused on brain arteriolosclerosis (B-ASC), a subtype
of cerebral small vessel pathology characterized by degen-
erative wall thickening of arterioles.8–10 The true preva-
lence of B-ASC is unknown but has been observed in 39–
80% of autopsied elderly individuals.11,12 The pathologic
changes of B-ASC include hypertrophy and/or death of
vascular smooth muscle cells and extracellular deposition
of elastin and collagen.1,2,13,14 In the present study, we
sought to better understand the risk factors and global
cognitive status associated with B-ASC pathology
among aged individuals.

Hypertension and diabetes are presumed risk factors
for arteriolosclerosis (ASC) in the brain and other organs.
Chronic hypertension is associated with ASC pathology
in the brain, kidney, and other organs.15–17 Hypertensive
animal models have thicker cerebral arteriolar walls,
larger vessel cross-sectional areas, and smaller inner
arteriolar diameters compared to control animals.18,19

Diabetic patients have thicker subcutaneous gluteal arteri-
olar walls and larger cross-sectional areas compared to
controls.20,21 Diabetic animal models have thicker retinal
capillary walls22 and renal arteriolar glomerular basement
membranes23 compared to controls.

In addition to clinical risk factors, recent studies sug-
gest that a single nucleotide polymorphism (SNP) located
inABCC9,ATP-binding cassette sub-familyCmember9,
may be a genetic risk factor for B-ASCpathology in older
elderly individuals. Evidence in support of the link
between an ABCC9 SNP and B-ASC pathology are as
follows: (1) The rs704180 SNP located inABCC9 is asso-
ciated with hippocampal sclerosis of aging
(HS-Aging),24,25 a neurodegenerative disease affecting
individuals >80 years at death.8,26 (2) Individuals with
HS-Aging have worse B-ASC pathology compared to
individuals without HS-Aging pathology.8 (3) The gene
product of ABCC9 is a subunit of ATP-sensitive potas-
sium channels found in vascular smooth muscle cells,
including arterioles.27 Thus, by extension, ABCC9 gene
variants may constitute a risk factor for B-ASC path-
ology in elderly individuals. However, this credible
hypothesis has not been tested previously.

As the clinical and genetic risk factors for B-ASC are
imperfectly understood, so is the cognitive impairment
associated with this pathology. Studies on the global
cognitive status of patients with B-ASC have included
the analyses of Mini Mental State Examination
(MMSE) scores,28 Clinical Dementia Rating Scale
(CDR) scores,29 and CDR Sum of Boxes (CDRSUM)
scores.30 The MMSE is an assessment tool used in mea-
suring global cognitive function,31 while the CDR is a
measure of a person’s ability to accomplish activities of

daily living.32,33 The CDRSUM score is derived by
summing scores from all CDR domains.34 Prior ana-
lyses of data from 334 elderly individuals did not reveal
an association between B-ASC pathology and MMSE
scores.28 However, in an autopsy study with 52 cases,
widespread B-ASC pathology in cases with Alzheimer’s
disease (AD) was associated with worse global CDR
scores.29 Similarly, in an autopsy study using 715 AD
cases with CDRSUM information, researchers found
that high B-ASC severity was associated with worse
CDRSUM scores.30 Conflicting results from these stu-
dies may be due to a number of experimental factors
including small sample size (statistical power), particu-
lar cognitive domains affected by small blood vessel
pathologies, frequent presence of comorbid patholo-
gies, and parameters that vary in different parts of the
human aging spectrum.

In order to gain insight into B-ASC risk factors
and global cognitive status while factoring in other
dementia-associated pathologies, we analyzed a subset
of individuals from the National Alzheimer’s Disease
Coordinating Center (NACC) data set. Because there is
evidence of distinct neurodegenerative outcomes and
clinical-pathological correlation differences between
the ‘‘younger-old’’ and ‘‘oldest-old’’ persons,35–41 we
analyzed groups separately according to ages at death:-
< 80 years and �80 years. The goals of the study were
to determine if autopsy-verified B-ASC is associated
with global cognitive status, to assess the association
between vascular risk factors and B-ASC pathology,
and to determine the relationship between ABCC9
HS-Aging risk genotype and B-ASC pathology. In
order to further test the association between the
ABCC9 HS-Aging risk genotype and B-ASC pathology,
we studied the relationship between the ABCC9
HS-Aging risk genotype and cerebral blood flow (CBF)
(a possible in vivo manifestation of B-ASC pathology).
Genetic and neuroimaging data on a sub-sample of
individuals from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) data set were used to test this
association.

Methods

This study used data from the NACC and ADNI data
sets. Patient recruitment and data collection in the
NACC data set have been previously described includ-
ing details related to institutional review board
approval and patient consent.42–45 Research using
NACC data was approved by the University of
Washington Human Subjects Division. Patient recruit-
ment, neuroimaging acquisition, and data collection on
individuals included in the ADNI data set have been
previously described with approval by local ethics
review boards at each participating site.46,47

202 Journal of Cerebral Blood Flow & Metabolism 37(1)



Study subjects

The NACC data set contains research subject information
collected from 34 past and present Alzheimer’s Disease
Centers (ADCs) across the United States, comprising clin-
ical, genetic, and neuropathological (autopsy) data.43

More detailed information on data collection is available
online (https://www.alz.washington.edu/WEB/dataforms_
main.html). Archival data from September 2005
through December 2013 were obtained for this study.

The initial pulled archival data from the NACC data
set comprised 29,483 cases. Living cases (n¼ 26,686) and
autopsied cases with missing information which would
preclude making an assessment of B-ASC status
(n¼ 407) were excluded from the analysis. For analysis,
cases were split into two age at death groups:< 80 years
(n¼ 1008) and �80 years (n¼ 1382).

The ADNI data set is from a multicenter longitudinal
study in the United States and Canada in which subjects
with normal cognition, MCI and AD were followed with
cognitive testing, neuroimaging techniques, and other bio-
marker.46 A convenience sample (n¼ 15) of rs704180
homozygous (A_A or G_G genotype) individuals was
used for CBF analysis. Neither other scans nor SNPs
were assessed from ADNI.

Cognitive and functional assessment in the
NACC data set

MMSE (0–30; 30¼ no global impairment) and
CDRSUM (0–18; 0¼no global impairment) scores
were used as measures of global cognitive status.31–33

Scores from the most recent ADC clinical visit before
each individual’s death were used (median interval
between final visit and death: 0.83 years).

Clinical, neuropathologic, and genetic parameters
in the NACC data set

Clinical data were obtained from each participant’s
final ADC clinical visit before death. During clinical
research visits, medical histories were obtained
from subjects, caregivers (particularly if the subject
was cognitively impaired), and/or patient records. The
following self-reported vascular risk factors and cere-
brovascular diseases were used in the analyses: medical
histories of hypertension, diabetes, hypercholesterol-
emia, sex, smoking, stroke, and atrial fibrillation.
Responses were coded initially as unknown, absent,
recent/active, or remote/inactive, and subsequently,
‘‘recent’’ and ‘‘remote’’ responses were combined into
one category (i.e. history of a condition) for analytical
purposes. Body mass index (BMI) values were derived
from height and weight measurements. Pack years were
derived from self-reported cigarette packs smoked per
day and years of smoking.

Neuropathologic details from all cases included
Braak staging,48 CERAD neuritic plaque densities,49

and other parameters as described in detail previ-
ously.44 In the NACC Neuropathology Data Set
Coding Guidebook version 9.1 (https://www.alz.
washington.edu/WEB/forms_np.html), B-ASC was
described as ‘‘hyalinosis of the media and adventitia
of small parenchymal and/or leptomeningeal vessels.’’
B-ASC pathology was diagnosed using a semi-
quantitative four-tier categorization system with
responses scored to indicate ‘‘none’’, ‘‘mild’’, ‘‘moder-
ate’’, or ‘‘severe’’ B-ASC pathology. In the NACC
guidebook, neuropathologists were instructed to esti-
mate the overall severity of B-ASC pathology. No spe-
cific brain region for B-ASC pathological diagnosis was
mentioned; thus, this diagnostic methodology was left
to the discretion of each individual neuropathologist
and/or research center.

Genetic data were obtained and analyzed as
described previously.24,25 Briefly, the Alzheimer’s
Disease Genetic Consortium (ADGC) accrued genetic
data from 29 different ADCs, with multiple iterations
of SNP data,50–52 which were analyzed together
with neuropathological and clinical data gathered
through NACC.53 The three alleles identified were ana-
lyzed according to ADGC SNP nomenclature and were
GRN.rs5848 (A/G), TMEM106B.rs1990622 (A/G; note
that other reports have used T/C for this allele: the
‘‘A’’ allele is analogous to ‘‘T’’ allele in other
reports, whereas the ‘‘G’’ allele we report is analogous
to ‘‘C’’ allele), and ABCC9.rs704180 (A/G).24,25

APOE e4 genotype information from NACC was
also used in the analysis because APOE alleles
are known to be associated with cerebral amyloid
angiopathy (CAA), which could lead to vascular wall
distortions.54

Neuroimaging and genetic parameters
in ADNI data set

T1-weighted brain MRI scans were acquired using a
sagittal MP-RAGE sequence following the ADNI
MRI protocol.47,55 Arterial spin labeling (ASL) images
were obtained from ADNI data set. Data from 15
Caucasian individuals were acquired from six different
American research centers using a standardized pulsed
arterial spin labeling (pASL) protocol: Field Strength
¼ 3.0 tesla; Flip angle¼ 90.0 degree; Manufacturer
¼ SIEMENS; Matrix X¼ 320.0 pixels; Matrix
Y¼ 320.0 pixels; Pixel Spacing X¼ 4.0mm; Pixel
Spacing Y¼ 4.0mm; Pulse Sequence¼EP; Slice
Thickness¼4.0mm; TE¼ 12.0 ms; TR¼ 3400.0 ms.
Control and label images were subtracted, and quanti-
tative CBF (mL/100 g/min units) was calculated using
in-house Matlab software using the following

Ighodaro et al. 203



equation56,57 and then correlated with genotyping

CBF ¼
� � ðSIcontrol � SIlabelÞ

2 � � �M0 � TI1 � expð�TI2=T1,bloodÞ
½ml=100g=min�

where k was the brain/blood partition coefficient in
mL/g, SIcontrol and SIlabel were the time-averaged
signal intensities in the control and label images,
respectively, T1,blood was the longitudinal relaxation
time of blood in seconds, a was the labeling efficiency,
M0 was the equilibrium brain tissue magnetization,
TI1 was post-labeling delay, and TI2 was the label dur-
ation. SNP rs704180 in ABCC9 and APOE e4 status
information came from ADNI.

Statistical analyses

Exploratory bivariate analyses and regression modeling
were used to assess the association between clinical
vascular risk factors and B-ASC pathology. Initially,
a Chi-square test, a Mann-Whitney U test, or a
Kruskal–Wallis test were used to determine possible risk
factors for B-ASC severity in the two age at death groups.
A Chi-square test was applied for categorical variables,
whereas a Mann-Whitney U test or Kruskal-Wallis test
was applied for continuous non-normally distributed vari-
ables. Subsequently, clinical variables that yielded a
p< 0.05 in these analyses were included as independent
variables in an ordinal logistic regression to further eluci-
date the association between clinical variables and B-ASC
pathology while controlling for confounding effects. The
variables in this logistic regression model included age at
death, sex, hypertension, diabetes, smoking pack years,
and hypercholesterolemia.

Logistic regression modeling was used to determine the
association between the ABCC9 HS-Aging risk genotype
and B-ASC pathology. Age at death, sex, hypertension,
diabetes, pack years, and hypercholesterolemia were used
as covariates. Mild, moderate and severe B-ASC pathol-
ogies were collapsed into one category and treated as a
dependent variable.

A linear regression model was used to assess the
association between B-ASC pathology with MMSE
and CDRSUM scores. B-ASC pathology was treated
as the main independent variable. MMSE or
CDRSUM scores were treated as dependent variables
while adjusting for age at death, sex, Braak neurofibril-
lary tangles (NFT) stage, presence of any microinfarcts,
presence of neocortical Lewy bodies, and presence of
HS-Aging pathology. Adjusted mean MMSE and
CDRSUM scores derived from the linear regression
analyses were reported for each B-ASC severity cat-
egory and compared using the least squares method.

In order to assess the relationship between the
ABCC9 HS-Aging risk genotype and CBF, a possible

manifestation of B-ASC pathology, a Welch’s two
sample t-test was used to compare CBF measurements
between individuals with the ABCC9 HS-Aging homo-
zygous non-risk and risk genotypes. All statistical ana-
lyses were performed using IBM SPSS Statistics
22 Properties and PC-SAS 9.34 (SAS Institute, Inc.;
Cary, NC, USA).

Results

The inclusion/exclusion criteria applied to individuals used
in our analyses from the NACC data set are shown in
Figure 1(a). Individuals used in these analyses were pre-
dominantly (>90%) Caucasian (data not shown), and
median year at death was 2010 (range: 2005–2013). In
order to convey examples of blood vessel profiles repre-
senting the spectrum of B-ASC pathology, images were
obtained from four human brain sections stained with
hematoxylin and eosin (H&E) (Figure 2). The percentage
of individuals with B-ASC pathology trended upward
with increasing age at death. (Figure 1(b)). When stratify-
ing by age at death, the percentage of individuals with
moderate or severe B-ASC pathology was higher in
older age at death groups (p< 0.0001) (Figure 1(c)).
These results indicate that B-ASC is a common pathology
in the NACC data set, becoming more severe with increas-
ing age at death.

As a result of prior studies showing different outcomes
and clinical-pathological correlations in the ‘‘oldest
old,’’35–37 we analyzed the overall cohort in two separate
age groups. More specifically, the cutoff of 80 years was
chosen because it has been used before to help highlight
neurodegenerative disease and/or neuropathologic fea-
tures that differ – often quite dramatically – among the
‘‘oldest-old’’.39–41,58–60 Furthermore, this cutoff was close
to the overall cohort mean (80.0 years) and median (82.0
years) age at death. Comparing the two age at death
groups in the NACC data set, individuals in the �80
years age at death group were more often female, hyper-
tensive, and less often impaired cognitively when com-
pared to individuals in the <80 years age at death group
(Table 1). In addition, individuals in the �80 years age at
death group were less likely to show ‘‘high’’ levels of AD
pathology, but more likely to show B-ASC and HS-Aging
pathologies at autopsy, compared to individuals in the
<80 years age at death group. These data, in addition to
the prior precedents in the literature, confirmed that the
two age groups show differing clinical risk factors, cogni-
tive profiles, and neuropathological autopsy results.

Global cognitive status associated
with B-ASC pathology

To analyze the global cognitive status of individuals
with B-ASC pathology, linear regression analyses were
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Figure 1. Exclusion/inclusion criteria and frequency of brain arteriolosclerosis (B-ASC) pathology in autopsied cases from the National

Alzheimer’s Coordinating Center (NACC) data set. (a) Living cases and autopsied cases with missing information which would preclude

making an assessment of B-ASC status were excluded from analysis. (b) The percentage of cases with any B-ASC pathology (mild,

moderate or severe) in the NACC data set. Asterisk (*) indicates that 64 cases with age at death <50 years or> 100 years were not

plotted. (c) A stacked bar graph showing that B-ASC severity increases with age at death, Chi-square p-value< 0.0001.
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Figure 2. Semi-quantitative severity grading of B-ASC pathology and its non-association with APOE e4 allele in the NACC data set.

(a, b, c, d) Photomicrographs of hematoxylin- and eosin-stained blood vessels. (a) What we assume to be a normal arteriole (green

arrow). (b) mild B-ASC with relatively mild thickening of vessel wall. (c) moderate B-ASC severity grade 2 with increased thickening of

vessel wall. (d) severe B-ASC with prominent thickening of vessel wall and partly occluded vessel lumen. Scale bars¼ 100 mm. (e) The

association between APOE e4 genotypes and any degree of CAA (mild, moderate, severe) combining both age at death groups: *Chi-

square p-value< 0.0001 among 1883 individuals for whom APOE genotype data and CAA diagnosis were available. Those with e2/e3

and e2/e2 genotypes were combined into one category. There were no statistically significant associations that could be determined

between B-ASC severity and APOE genotype.

B-ASC: brain arteriolosclerosis; CAA: cerebral amyloid angiopathy.
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performed using B-ASC pathology as a predictor, other
dementia-inducing pathologies as covariates, and MMSE
or CDRSUM scores as outcome variables. After adjust-
ing for age at death, cortical microinfarcts, AD pathology
(Braak NFT stage and CERAD neuritic plaque rating),
neocortical Lewy bodies, and HS-Aging pathologies,
B-ASC was a significant pathological predictor in the
MMSE model using cases from the <80 years age at
death group and in the CDRSUM model using cases
from both age groups (Supplementary Tables 3 and 4).

In the< 80 age at death group, the adjusted MMSE and
CDRSUM group means for cases with severe B-ASC
were worse compared to that of cases with none, mild,
or moderate B-ASC pathology (Table 2). In the� 80 age
at death group, the adjusted MMSE group mean score
for cases with severe B-ASC was worse compared to that
of cases with none or mild B-ASC pathology. The
adjusted CDRSUM group mean score for cases with
severe B-ASC pathology was worse compared to that of
cases with none, mild, or moderate B-ASC pathology

Table 1. Age at death group comparison on clinical, cognitive, neuropathologic, and genetic variables.

<80 years age

of death group

�80 years age

of death group

Missing

cases, n pa

n¼ 1008 n¼ 1382

Demographic variables

Age of death, median

(25th, 75th quartile)

70.0 (64.0, 76.0) 88.00 (84.0, 92.0) <0.0001b,c

Gender (%) <0.000b,c

Male 61.7 48.3

Female 38.3 51.7

Clinical variables

Hypertension (%)d 46.1 64.6 8 <0.0001b,c

Diabetes (%)d 9.6 13.2 2 0.008c

Hypercholesterolemia (%)d 47.7 49.8 28 0.315

Pack years median

(25th, 75th quartile)d
0.0 (0.0, 13.1) 0.0 (0.0, 15.0) 181 0.496

BMI median

(25th, 75th quartile)e
25.4 (22.8, 28.5) 24.9 (22.2, 27.6) 980 0.004c

Cognitive variables

MMSE median

(25th, 75th quartile)

16.0 (6.0, 24.0) 21.0 (14.0, 27.0) 697 <0.0001b,c

CDRSUM median

(25th, 75th quartile)

13.0 (7.0, 18.0) 9.0 (2.0, 15.0) <0.0001b,c

Neuropathological variables

AD pathology ‘‘High’’f 47.3 42.5 36 <0.0001b,c

HS-Aging (%)e 7.1 14.2 113 <0.0001b,c

B-ASC (%) <0.0001a,b,c

None 31.3 19.9

Mild 37.0 33.9

Moderate 23.8 31

Severe 7.8 15.2

Genetic variables

ABCC9.rs704180

genotype A_A (%)

23.8 25.8 1465 0.508

APOE e4 allele (%) 48.1 39.9 467 <0.0001b,c

In comparing the two age at death groups, p-values for age at death, pack years, and BMI are from Mann-Whitney U analyses. p-Values for gender,

hypertension, diabetes, hypercholesterolemia, B-ASC, ABCC9 HS-Aging risk genotype (rs704180.A_A), and APOE e4 allele are determined from Chi-

square tests. Percentages were recorded after excluding missing cases for each variable. AD: Alzheimer’s disease; B-ASC: brain arteriolosclerosis; BMI:

body mass index; CDRSUM: clinical dementia rating sum of boxes; HS-Aging: hippocampal sclerosis of aging; MMSE: mini mental state examination.
aGroup comparisons exclude cases with missing data. bp-Value<0.05. cSignificant p-value after Bonferroni correction for multiple comparisons.a,b,c,d,e,f

dSelf-reported vascular risk factors. eDerived variables from NACC variables. fNIA/Reagan Institute Criteria, 1997.
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(Table 2). In addition, the adjusted CDRSUM group
mean score for cases with moderate B-ASC pathology
was worse compared to that of cases with mild B-ASC
pathology. These results indicate that after adjusting for
age and co-morbid brain pathologies, individuals with
moderate and severe B-ASC pathology had worse
global cognition compared to those with none or mild
B-ASC pathology.

Clinical vascular risk factors associated
with B-ASC pathology

Bivariate analyses and regression modeling were used
to assess the relationship between vascular risk factors
and B-ASC pathology. Race and ethnicity were not
adjusted for in the models because of the low sample
size within each group (data not shown). In the< 80
age at death group, hypertension, diabetes, and hyper-
cholesterolemia were associated with B-ASC severity
(Supplementary Table 2). In the �80 age at death
group, sex and smoking pack years were associated
with B-ASC severity. With respect to clinically evident
cerebrovascular disease, self-reported stroke history
was associated with autopsied confirmed B-ASC path-
ology in the <80 years age at death group (p¼ 0.003)
and the� 80 years age at death group (p¼ 0.033) (data
not shown). However, there was no association
between atrial fibrillation and B-ASC pathology (data
not shown). Five vascular risk factors, along with age
at death, were used in an ordinal logistic regression,
with B-ASC severity as the ordinal outcome measure,
to determine risk factors associated with B-ASC sever-
ity. In the< 80 age at death group, age at death, female
sex, and hypertension were associated with predicting
B-ASC severity. In the� 80 age at death group, only
age at death and female sex remained to be significant
variables in the model but not hypertension (Table 3).
These findings suggest that age at death and sex are
associated with autopsy-proven B-ASC in both
younger and older-aged individuals. However, hyper-
tension may only be a risk factor for B-ASC pathology

only in young elderly individuals, raising the possibility
of other B-ASC risk factors being important in more
advanced old age.

Novel B-ASC genetic risk factor: ABCC9

Genetic and pathological information from NACC
were used to assess the association between the
ABCC9 HS-Aging risk genotype and B-ASC path-
ology. Of the 2390 cases included in the analysis, a
total of 925 persons had available ABCC9 SNP infor-
mation. Individuals with ABCC9 genotype information
were slightly more likely to have AD pathology (45%
vs. 40%) than those lacking genotype data (data not
shown). Among subjects with available ABCC9 SNP
data, bivariate analysis showed that the ABCC9
HS-Aging risk genotype was associated with the pres-
ence of any B-ASC pathology (mild, moderate, and
severe combined) in the� 80 age at death group
(p¼ 0.032) (Figure 3). By contrast, APOE genotype
status was strongly associated with CAA pathology as
expected but not with B-ASC pathology (Figure 2(e)).

To account for relevant covariates, a logistic regres-
sion analysis was used, treating the presence of B-ASC
pathology as a dependent variable, the ABCC9
HS-Aging risk genotype as an independent variable,
and age at death, sex, smoking pack years, and history
of hypertension, diabetes, and hypercholesterolemia
as covariates. Results from this model showed that
individuals in the �80 years at death group with
the ABCC9 HS-Aging risk genotype were 1.9 times
more likely to have a diagnosis any B-ASC pathology
(mild, moderate, or severe) compared to individuals
without the ABCC9 HS-Aging risk genotype (p¼ 0.04).
There was no association between the ABCC9HS-Aging
risk genotype and B-ASC pathology in the <80 age at
death group. In a sensitivity analysis adjusting for
research center identifications as a fixed effect, the asso-
ciation between the ABCC9HS-Aging risk genotype and
B-ASC pathology was still observed (p¼ 0.04) in
the� 80 years at death group.

Table 2. Adjusted final MMSE and CDRSUM Group means associated with brain arteriolosclerosis (B-ASC)

pathology.a

Age of death< 80 years Age of death� 80 years

B-ASC MMSE CDRSUM MMSE CDRSUM

None 17.0� 0.7 10.5� 0.4 21.3� 0.6 6.8� 0.4

Mild 16.8� 0.6 10.8� 0.3 21.2� 0.4 6.8� 0.3

Moderate 17.1� 0.8 10.3� 0.4 20.4� 0.5 7.5� 0.3b

Severe 13.1� 1.3c 12.7� 0.7c 19.5� 0.7d 9.0� 0.4c

CDRSUM: Clinical Dementia Rating Sum of Boxes. MMSE: Mini Mental State Exam. aMeans are adjusted for age at death (years), sex,

Braak & Braak stage, semi-quantitative ratings of diffuse and neuritic plaques, and dummy indicators for microinfarcts, HS-aging,

and Lewy body pathology. bp< 0.05 versus mild. cp< 0.01 versus none, mild, and moderate. dp< 0.05 versus none and mild. Bold

values indicate significant finding.
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ABCC9 and cerebral blood flow

To provide further testing on the association between
the ABCC9 HS-Aging risk genotype and B-ASC path-
ology, we assessed a neuroimaging modality that we
hypothesize detects a clinical manifestation of B-ASC
pathology. This was performed by measuring CBF in
convenience sample of individuals (n¼ 15) from the
ADNI data set comparing persons with A_A versus
G_G ABCC9.rs704180 genotype. Individuals were on
average 72 years of age at the time of scan and both
groups of rs704180 homozygotes (A_A and G_G) were
matched for cognitive status, APOE alleles, sex, and
age (see Supplementary Table 5 for complete data on
these parameters). Individuals with two ABCC9
HS-Aging non-risk alleles (n¼ 7 with rs704180G_G)
showed higher global CBF measurements compared
to those with two ABCC9 HS-Aging risk alleles (n¼ 8
with rs704180 A_A) (Figure 4). The group level relative
difference in CBF was 28%, p< 0.001 (Figure 4).

Discussion

In this study, we describe the global cognitive status,
in addition to both clinical and genetic putative risk
factors of B-ASC, in autopsied cases from the NACC
data set. The presence of severe B-ASC pathology
was associated with global cognitive impairment. In
addition, a neuroimaging CBF experiment further sup-
ports the association between the ABCC9 HS-Aging

risk genotype and B-ASC. Potential risk factors for
B-ASC included advanced age at death, hypertension,
and sex. In younger individuals (age at death< 80
years), hypertension was associated with B-ASC.
However, this association was not observed in older
individuals (age at death� 80 years). In the� 80 years
age at death group, the ABCC9 HS-Aging risk geno-
type was associated with B-ASC pathology. These find-
ings suggest that B-ASC risk factors are age dependent.
For example, hypertension appears to have a strong
role in younger elderly individuals, while at least one
genetic factor (ABCC9) may affect the B-ASC risk in
the ‘‘oldest-old’’.

There are potential limitations in this study. The
NACC data set is not a population-based data
set; it is better characterized as a clinical series of per-
sons enrolled at ADCs, and in addition, carries
known biases associated with autopsy cohorts.42,43,53,61

As a result, NACC participants are predominantly
Caucasian, highly educated, and are drawn predomin-
antly from dementia clinics.42,44 Due to the lack of
socioeconomic information and low sampling of indi-
viduals from different ethnic/racial groups, race and
ethnicity were not included in the regression models.
The data on clinical disease risk factors are largely
self-reported, which can lead to an underestimation
of the true disease frequencies.62 In addition, duration
of disease (i.e. hypertension) data was not available;
therefore, it was not adjusted for in the regression
models. We found that female sex was associated with

Table 3. Brain arteriolosclerosis and vascular risk factors.a

Beta coefficient� S.E. Odds ratio 95% C.I. p

<80 years age at death group (n¼ 922)

Age at death (one-year increase) 0.04� 0.01 1.0 1.0–1.1 <0.0001b

Gender (male vs. female) �0.3� 0.1 0.8 0.7–0.8 0.029b

Hypertension (vs. no hypertension) 0.3� 0.1 1.4 1.1–1.8 0.017b

Diabetes (vs. no diabetes) 0.3� 0.2 1.4 0.9–2.1 0.120

Pack years (one-year increase) 0.0� 0.003 1.0 1.0–1.006 0.962

Hypercholesterolemia (vs. no hypercholesterolemia) 0.2� 0.1 1.3 1.0–1.6 0.067

�80 years age at death group (n¼ 1255)

Age at death (one-year increase) 0.02� 0.01 1.0 1.00–1.04 0.021b

Gender (male vs. female) �0.2� 0.1 0.8 0.7–1.0 0.041b

Hypertension (vs. no hypertension) 0.2� 0.1 1.2 1.0–1.5 0.134

Diabetes (vs. no diabetes) 0.001� 0.2 1.0 0.7–1.4 0.995

Pack years (one-year increase) 0.003� 0.002 1.0 1.0–1.0 0.102

Hypercholesterolemia (vs. no hypercholesterolemia) �0.1� 0.1 0.9 0.7–1.1 0.257

aAn ordinal logistic regression model was applied in both age at death groups using vascular risk factors identified from exploratory

analysis (see Supplementary Table 2). In both age at death groups, the statistical models included cases with available data on all six

variables. bp-Value< 0.05.

Ighodaro et al. 209



B-ASC; this finding is potentially confounded by the
increased longevity of women (age being a risk factor
for B-ASC) and many other covariates that vary with
sex. Although this association survived in a regression
model that accounted for other factors including age at
death, these data should be interpreted with caution
and future work is merited in this area. The NACC
neuropathology data set coding guidebook does not
suggest optimal brain sections for B-ASC diagnosis.
As a result, B-ASC diagnostic methods are inconsistent
across ADCs. Although non-NACC guidelines exist for
B-ASC diagnosis,63 different ADCs have reported using
the basal ganglia64 or a ‘‘global’’8 criteria in the diag-
nosis of B-ASC. In a prior, non-ADC autopsy study
with 135 vascular dementia brains, B-ASC was seen in

the frontal lobe (83.7% of cases), temporal lobe (80.7%
of cases), and basal ganglia (89.6% of cases).65 Because
the diagnosis of B-ASC is presently based on H&E
staining, other pathologies that lead to a distortion of
vascular walls (i.e. CAA) may mistakenly be diagnosed
as B-ASC, leading to a biased estimation of B-ASC
frequency. However, we saw a strong correlation
between APOE status and CAA severity, but no cor-
relation between APOE status and B-ASC severity in
our sample, indicating that these pathologies are
at least partly independent. In the future, improved
methodologies and consensus for B-ASC pathologic
diagnosis should improve the specificity of B-ASC
operationalization. Until then, it can be argued that a
multicenter approach, combining data from dozens of

Figure 3. Relationship between any degree of brain arteriolosclerosis (B-ASC) pathology in NACC and HS-Aging risk genotypes.

(a) The association between ABCC9 HS-Aging risk genotype (rs704180 A_A, as determined previously)24,25 and B-ASC pathology,

stratifying by age of death. *Chi-square p-value¼ 0.032. By contrast, as shown in (b,c), neither the TMEM106B (rs1990622 A_A or

A_G) nor GRN (rs5848 T_T) risk genotypes are associated with B-ASC pathology.
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neuropathologists, each applying center-specific diag-
nostic rubrics, is the best way to achieve an outcome
that is representative of what any given neuropatholo-
gist would define as ‘‘brain arteriolosclerosis.’’

Despite the challenges inherent to a retrospective
cross-sectional study, the NACC and ADNI databases
provide relatively high-quality contexts to study

clinical, genetic, neuroimaging, and/or pathological
correlations. Detailed cognitive assessments, genetic,
and neuropathological data have allowed us to study
associations of B-ASC with cognitive status and both
clinical and genetic variables. These include both ‘‘trad-
itional’’ ASC risk factors (hypertension and diabetes),
as well as novel genetic aspects (ABCC9 SNP). Mixed

Figure 4. Arterial Spin labeling (ASL) neuroimaging indicates that ABCC9 HS-Aging risk genotype is associated with decreased

cerebral blood flow (CBF), compatible with a novel pathogenetic mechanism. (a) A representative scan of a 77-year-old female with

the ABCC9 HS-Aging non-risk genotype: rs704180 G_G. (b) A representative scan from a 76-year-old male with rs704180 A_A.

(c) Individuals with the rs704180 G_G genotype showed significantly higher global CBF compared to those with the rs704180 A_A

genotype, group level relative difference in CBF is 28%, p< 0.001. Neither other scans nor SNPs were analyzed from the ADNI data

set. (d) An interpretation of the results presented in this paper. We hypothesize that an ABCC9 gene variant increases risk for B-ASC

and/or decreased CBF, which, in turn, may cause or exacerbate hippocampal TDP-43 pathology and HS-Aging. All of these pathologies

have been associated with cognitive impairment. Other variants in GRN and TMEM106B genes are not associated with B-ASC

pathology and thus may represent downstream factors, perhaps more directly related to risk of hippocampal TDP-43 pathology.

Presumed non-cerebrovascular pathologies (e.g. frontotemporal lobar degeneration (FTLD), brain trauma, and Alzheimer’s disease)

also are associated with hippocampal TDP-43 pathology, indicating that hippocampal TDP-43 pathology is a common downstream

pathological phenomenon.
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pathologies are frequently seen in the aged brain30,66,67

and detailed neuropathological data from NACC
allowed us to adjust for other dementia-inducing
pathologies in our analyses. B-ASC is a common cere-
brovascular pathology that is often seen in a complex
milieu along with other brain diseases30 and has been
associated with motor impairment in advanced old
age.12 In this NACC-ADC data set, the frequency of
any B-ASC pathology (mild, moderate, and severe) was
75.3%, and became more severe with increasing age at
death, which is consistent with findings from other aut-
opsy cohorts.11,68,69

We showed that B-ASC pathology was associated
with worse MMSE and CDRSUM scores after adjust-
ing for co-morbid cognitive impairment-inducing
pathologies. Prior studies reporting the cognitive pro-
files of B-ASC are limited, mostly focusing on patients
diagnosed with vascular dementia (a very heteroge-
neous condition).5–7 Although both age at death
groups had MMSE and CDRSUM scores indicative
of cognitive impairment, individuals in <80 age at
death group were more globally impaired compared
to individuals in the �80 years age at death group.
This finding may be attributed to the differing frequen-
cies of AD and B-ASC pathologies present in the two
age at death groups: higher number of individuals with
‘‘high’’ AD pathology in< 80 years age at death group
and higher number of individuals with moderate
or severe B-ASC pathology in� 80 years age at
death group. Individuals with AD pathology exhibit
greater deficits in memory function and faster rates of
information decay compared to individuals with
cerebrovascular disease.70 Our study provided quanti-
tative evidence to support the hypothesis that B-ASC is
associated with worse cognitive status independent of
other brain changes. Furthermore, it underscores the
importance of identifying risk factors, specific neuroi-
maging abnormalities, and potential treatments of
B-ASC, in order to prevent or reverse its development
later in life.

Hypertension is a major risk factor for B-ASC.16,71

In an autopsy study, Moritz and Oldt16 observed that
B-ASC pathology was more severe in the hypertensive
group compared to the non-hypertensive group.16 In
the< 80 age at death group, we found hypertension
to be associated with B-ASC. However, in the� 80
age at death group, there was no association detected
between B-ASC and hypertension, and these results did
not change after adjusting for anti-hypertensive medi-
cation use. Similarly, in an autopsy study consisting of
70 cases with B-ASC, 31% of cases were normotensive
with 10 of these cases having an age at death �80
years.71 These results suggest that hypertension may
not be the only risk factor for B-ASC pathology in
older elderly individuals.

We hypothesize that the known strong impact(s) of
diabetes on brain function may be mediated through a
combination of vascular and metabolic etiologies.72 We
did not find support for the direct impact of diabetes on
B-ASC, but there was a trend between diabetes and
B-ASC in the younger cohort. We note that there was
not a distinction between Type 1 or Type II diabetes in
the NACC data set, although the majority is presumed
to be Type II diabetes. Evidently, beyond the ‘‘usual
suspects’’, there are additional, currently unknown risk
factors for B-ASC in advanced old age.

One category of risk factors that may be relevant to
B-ASC pathology in the ‘‘oldest-old’’ is genetics, and
we here provide support for a specific candidate risk
allele. The ABCC9 SNP rs704180 was previously asso-
ciated with risk for HS-Aging,24,25 a hippocampal path-
ology seen in �10–25% of autopsied individuals
beyond 80 years at death.26,73–75 Recently, we found
an association between HS-Aging and B-ASC in three
separate cohorts, including the NACC data set.8 Using
digital image methods for analysis of arteriolar morph-
ology, we found that HS-Aging cases had larger vessel
areas, vessel perimeters, vascular areas, and vessel wall
thicknesses compared to non HS-Aging cases.8

Research from a different cohort, using different neuro-
pathological scoring, and statistical methods, reported
that moderate B-ASC (but not severe or mild) was
associated with hippocampal atrophy.76 Because of all
these findings collectively, we hypothesized that the
ABCC9 HS-Aging risk genotype is associated with
B-ASC in advanced old age, possibly upstream of the
risk for HS-Aging (Figure 4(d)). The present study
showed an association between the ABCC9 HS-Aging
risk genotype and B-ASC pathology in cases with an age
at death �80 years. There was no evidence of that associ-
ation among individuals with age at death <80 years.

In order to test the association between the ABCC9
HS-Aging risk genotype and B-ASC, we analyzed CBF
in elderly individuals. The rationale for this experiment
includes that (1) B-ASC is associated with white matter
hyperintensities (WMHs) on MRI scans,77–81 and (2)
WMHs have been correlated with decreases in
CBF82–84 and cognitive impairment.85–89 We found
the ABCC9 HS-Aging risk genotype to be associated
with decreased CBF in elderly individuals. These find-
ings support the hypothesis that the ABCC9 HS-Aging
risk genotype promotes B-ASC in the oldest-old with
decreases in CBF on neuroimaging. ABCC9 encodes a
regulator of ATP-sensitive potassium channels that is
expressed in vascular smooth muscle cells.90–93 The pro-
tein is important for vascular tone regulation and
reactivity to metabolic factors and oxidative
stress.90,94–96 We hypothesize that gene variants in
ABCC9 could result in chronic perturbations of the
neurovascular unit leading to decrease in CBF and
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B-ASC pathology. Therefore, the brain changes associated
with ABCC9 gene variants may be part of a ‘‘brain wide’’
disease characterized by HS-Aging, TDP-43 pathology,
and B-ASC in elderly individuals.97,98 Since TMEM106B
and GRN SNPs were not associated with B-ASC path-
ology, we hypothesize that these are downstream in the
pathological process of HS-Aging (Figure 4(b)). Further
studies are warranted to test this hypothesis.

We conclude that B-ASC is a common vascular path-
ology with a deleterious impact on global cognition in
elderly individuals. Risk factors for B-ASC include
hypertension, which has long been considered to be a
putative modifiable factor, as well as advanced age.
Additional possibly targetable mechanisms involved in
the B-ASC pathogenesis are mostly unknown, but the
results of this study offer candidate pathways involving
ABCC9 gene products. Furthermore, we provide evi-
dence that ASL neuroimaging is a potential candidate
biomarker to indicate ABCC9-related variations in
CBF that could be useful in a clinical setting. These find-
ings may serve to increase awareness about B-ASC, a
common cerebrovascular pathology associatedwith cog-
nitive impairment.
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